Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Natural hazards, including hurricanes and earthquakes, can escalate into catastrophic societal events due to the destruction of the built environment. To minimize the impact of such hazards on vulnerable communities, civil infrastructure must be designed with performance criteria that prioritize public safety and ensure continuous operation. The National Science Foundation funded Natural Hazards Engineering Research Infrastructure (NHERI) program focuses on advancing the development of resilient infrastructure. The NHERI Lehigh Real-time Multi-directional Simulation Experimental Facility (EF) is one of the facilities within this program. The facility serves as an open-access research hub, offering advanced technologies and engineering tools to develop innovative solutions for natural hazard mitigation. It is uniquely equipped to perform large-scale, multi-directional structural testing in real-time using a cyber-physical simulation technique known as real-time hybrid simulation. This technique enables researchers to model entire systems subjected to dynamic loads at a full scale, allowing for realistic assessments of infrastructure responses to specific hazard scenarios and the development of effective mitigation strategies. This paper explores how cyber-physical simulation has revolutionized research in natural hazards engineering and its influence on engineering practices. It highlights several ongoing projects at the NHERI Lehigh EF aimed at enhancing community resilience in hazard-prone regions. The paper also discusses the planned expansion of the EF, which aims to broaden its focus to include a wider range of natural hazards, and infrastructure systems. This expansion will incorporate both physical and computational resources to enhance the understanding of fluid interactions in combined natural hazards and climate change impacts on coastal and offshore infrastructure. The NHERI Lehigh EF represents a transformative facility that is reshaping natural hazards research and will continue to play a pivotal role in the development of risk management strategies for more resilient communities.more » « lessFree, publicly-accessible full text available March 19, 2026
-
Abstract Real‐time hybrid simulation (RTHS) involves dividing a structural system into numerical and experimental substructures. The experimental substructure is challenging to model analytically and is therefore modeled physically in the laboratory. Analytical substructures are conventionally modeled using the finite element method. The two substructures are kinematically linked, and the governing equations of motion are solved in real‐time. Thus, the state determination of the analytical substructure needs to occur within the timestep, which is of the order of a few milliseconds. All structural systems are supported by a soil‐foundation system and any evaluation of the efficacy of response modification devices placed in the structure should consider soil‐foundation structure interaction (SFSI) effects. SFSI adds compliance to a structural system, thereby altering the natural frequencies. Additionally, nonlinear behavior in the soil can result in residual deformations in the foundation and structure, as well as provide added damping. These effects can occur under both wind and earthquake loading. To overcome the barrier of the large computational effort required to model SFSI effects in real‐time using the conventional finite element approach, a neural network (NN) model is combined with an explicit‐based analytical substructure and experimental substructure with dampers to create a framework for performing RTHS with SFSI effects. The framework includes a block of long‐short term memory (LSTM) layers that is combined with a parallel rectified linear unit (ReLU) to form a NN model of the soil‐foundation system. RTHS of a tall 40‐story steel building equipped with nonlinear viscous dampers and subjected to a windstorm are performed to illustrate the framework. It was found that a number of factors have an effect on the quality of RTHS results. These include: (i) the discretization of the wind loading into bins of basic wind speed; (ii) the extent of the NN model training as determined by the root mean square error (RMSE); (iii) noise in the restoring forces produced by the NN model and its interaction with the integration algorithm; and, (iv) the bounding of outliers of the NN model's output. Guidelines for extending the framework for the RTHS of structures subjected to seismic loading are provided.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Real-time hybrid simulation (RTHS) divides a structural system into analytical and experimental substructures that are coupled through their common degrees of freedom. This paper introduces a framework to enable RTHS to be performed on 3D nonlinear models of tall buildings with rate dependent nonlinear response modification devices, where the structure is subjected to multi-directional wind and earthquake natural hazards. A 40-story tall building prototype with damped outriggers is selected as a case study. The analytical substructure for the RTHS consists of a 3-D nonlinear model of the structure, where each member in the building is discretely modeled in conjunction with the use of a super element. The experimental substructure for the RTHS consists of a full-scale rate-dependent nonlinear viscous damper that is physically tested in the lab, with the remaining dampers in the outrigger system modeled analytically. The analytically modeled dampers use a stable explicit non-iterative element with an online model updating algorithm, by which the covariance matrix of the damper model’s state variables does not become ill-conditioned. The damper model parameters can thereby be updated in real-time using measured data from the experimental substructure. The explicit MKR-α method is optimized and used in conjunction with the super element to efficiently integrate the condensed equations of motion of a large complex model having more than 1000 nonlinear elements, thus enabling multi-axis earthquake and wind hybrid nonlinear simulations to be performed in real-time. An adaptive servo-hydraulic actuator control scheme is used to enable precise real-time actuator displacements in the experimental substructure to be achieved that match the target displacements during a RTHS. The IT real-time architecture for integrating the components of the framework is described. To assess the framework, 3D RTHS of the 40-story structure were performed involving multi-axis translational and torsional response to multi-directional earthquake and wind natural hazards. The RTHS technique was applied to perform half-power tests to experimentally determine the amount of supplemental damping provided by the damped outrigger system for translational and torsional modes of vibration of the building. The results from the study presented herein demonstrate that RTHS can be applied to large nonlinear large structural systems involving multi-axis response to multi-directional excitation.more » « less
-
The central difference is a popular algorithm used to integrate the equations of motion, yet suffers from two drawbacks: (1) it is only conditionally stable and requires a small-time step to maintain numerical stability; (2) it is nondissipative, and high-frequency spurious oscillations may appear and compromise the accuracy of the solution. These drawbacks are detrimental to applying the algorithm to the real-time hybrid simulation of large, complex nonlinear structural systems. In this paper, the conventional central difference algorithm is modified to overcome these drawbacks, and the modified algorithm is applied to the real-time hybrid simulation of complex structural systems.more » « less
-
The system under investigation is a 2-story reinforced concrete building. Nonlinear viscous dampers were placed at the 1st and 2nd stories. The building was subjected to the maximum considered earthquake hazard levels. The outcome of the tests is to assess a newly developed explicit non-iterative formulation for the nonlinear viscous damper model and the ability of the unscented Kalman filter to identify and update the damper parameters in order to improve the model’s prediction of the damper force. The data collected from the tests can be reused by replaying the real-time hybrid simulation offline, where all of the response quantities of the building can be retrieved.more » « less
-
The system under investigation is a 40 story building. Real-time hybrid simulations (RTHSs) were performed on the building, where the entire façade of the structure is subjected to wind loading over a 360 second duration. Nonlinear viscous dampers between the outrigger truss and perimeter columns are placed at stories 20th and 30th. The outcome of the tests is to assess the ability of the damped outrigger system to suppress undesirable floor accelerations. The data collected from the tests can be reused by replaying the real-time hybrid simulation offline, where all of the response quantities of the building can then be retrieved. The data can be reused to study the response of tall buildings with outriggers and passive dampers subjected to wind natural hazards.more » « less
-
The system under investigation is a 40 story building. Real-time hybrid simulations (RTHSs) were performed on the building, where the structure is separately subjected to multi-natural hazards consisting of a 110 mph sustained wind storm and 43 second earthquake. Nonlinear viscous dampers between the outrigger truss and perimeter columns are placed at stories 20th and 30th. The outcome of the tests was to assess the ability of the damped outrigger system to suppress undesirable floor wind accelerations and reduce earthquake story drift and damage. The data collected from the tests can be reused by replaying the real-time hybrid simulation offline, where all of the response quantities of the building can be retrieved. The data can be reused to study the response of tall buildings with outriggers and passive dampers subjected to wind and earthquake natural hazards.more » « less
-
Protecting both the essential building contents and the structural system—as well as facilitating and accelerating the post-event functionality of business operations—is a major concern during natural hazards. Floor isolation systems (FIS) with rolling pendulum bearings along with nonlinear fluid viscous dampers (NFVD) have been proposed to mitigate damage and enhance the resiliency of non-structural and structural systems, respectively. These devices are designed to decrease vibrations under dynamic loading conditions. In this poster, we introduce research using tridimensional nonlinear cyber-physical experimental testing (i.e., real-time hybrid simulations) to validate the performance of these response modification devices placed in structural systems under wind and earthquake loading conditions. The effects of soil-structure-foundation and fluid-structure interactions were also accounted for. The novelty of the project is the use of multi-directional large-scale real-time hybrid simulations of complex nonlinear systems under wind and earthquake demands to combine experimental structural modification passive devices with analytical multi-story buildings considering soil-foundation interaction via neural network. Results show that the FIS and NFVD can significantly reduce the demand on non-structural and structural systems of buildings subjected to natural hazards whose response can be also significantly affected by soil-foundation-structure interaction. A product of this research is the data (which is linked in Related Works), which can be used to compare with new studies using the same experimental techniques and structural modification devices or with alternative approaches. Researchers interested in multi-natural hazards resilience and mitigation, state-of-the-art structural experimental techniques, and the use of machine learning as a tool to improve modeling efficiency will benefit from its results. Also, companies dedicated to the commercial development of structural response modification devices, as well as policymakers working or with interest in economic and social resilience.more » « less
-
Two partition walls with return walls at both ends and traditional slip-track detailing were investigated. Special gap details were evaluated to reduce damage at the wall intersection. The first detail utilized a large gap in the wall intersection, while the other detail utilized distributed gaps along the wall. The walls were tested under a bidirectional loading protocol, to provide better insight into the wall intersection behavior under bidirectional loading.more » « less
-
The slip behavior of two straight drywall partition walls (without return walls) – one with conventional slip-track detailing and the other with telescoping detailing – was examined. These drywall partition walls were tested under a bidirectional loading protocol, which allowed for systematic evaluation of the effect of out of plane drift on the in-plane resistance of the drywall partition walls.more » « less
An official website of the United States government
